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1 Introduction

Contagion models were first introduced into the credit risk field by Davis and Lo in 2001. The idea
behind contagion model is that default of a firm is either spontaneously or due to the default of
other firms which we called it infected default. Davis and Lo’s Model is a simple static model for
estimating the probability distribution of total number of defaults in a market. The model uses
identically independent Bernoulli random variables to describe the default probabilities. However,
the Davis and Lo model is not enough to explain the dynamic cases that we have to due with
loss over time in real practice. A more general extension model is therefore proposed by Cousin
et al. in 2011 in which multi-period calculation is considered. The extension model also accounts
for the domino effects of defaults which is not supported in the Davis and Lo’s Model. Also, it
introduces additional dependencies in the model and provides a more flexible contagion mechanism
by allowing defaulting to occur under certain circumstance with different function settings. The
authors calibrated the model with iTraxx tranche quotes to calibrate the model parameters. In this
report, we briefly introduce the Davis and Lo’s Model in Section 2 and the details of the extension
model is presented in Section 3. The theoretical result and numerical application are discussed in
Section 3 and 4 respectively.

2 Davis and Lo’s model

Davis and Lo’s model categorizes the cause of a bond’s default into two ways: the bond may either
default directly (spontaneous default) or may be infected by any defaulting bond (infectious
default). Consider there are n bonds in the market or in a portfolio, there is a Ω = {1, . . . , n}
representing the set of indices of bonds. For a bond i, a Benoulli random variable Xi equals to 1
if the bond defaults directly or the bond is infectious default when the indicator random variable
ζi equals to 1. Then we said the bond i is defaulted if Zi = 1 and expresses in term of Xiand ζiin
the following way:

Zi = Xi + (1−Xi)ζi

The infection occurs when there is at least one of the other bond j defaults directly (Xj = 1,where
j ∈ Ω, j 6= i) and it infects the bond i (Y ji = 1) as shown in the follows:

ζi = 1−
∏

j∈Ω,j 6=i

(1−XjY ji)
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Both Xiand Y jiare i.i.d Bernoulli random variables, the model assumes the probability for bond
i to default is p, so P (Xi) = p; and the probability for bond i being infected by bond j is q ,
P (Y ji) = q where p, q ∈ [0, 1]. From the model we can see that an infected bond cannot further
infect another bond. The Davis and Lo’s model is then stated that the distribution of the number
of defaults in the market is given by,

P (
∑
i∈Ω

Zi = k) = Cknα
pq
nk

where

αpqnk =pk(1− p)n−k(1− q)k(n−k)+

k−1∑
i=1

Cikp
i(1− p)n−i(1− (1− q)i)k−i(1− q)i(n−k)

The former term in α is the probability of k bonds default directly and the latter terms is
the probability that k bonds default in which i bonds directly default and k-i bonds are infectious
default. Although the Davis and Lo’s model is simple and easy to calculate, it does not explain
the domino effect of default in the real world. Like during the financial crisis, the default of a firm
may lead to a whole bunch of defaults of other firms and the infectious bonds can further infect the
others that forms a chain effect and cause severe damage. So do the model static characteristic fails
to provide cumulative defaults or losses over time that is essential to compute the CDO pricing.

3 The extension of the model

In this paper, the authors consider a time horizon t ∈ {1, . . . , T} and assume that the default can
happen in each interval (t−1, t]. Suppose that there are n firms in the market which are indexed by
1, 2, . . . , n. And let Ω be the set of these firms. Then Xi

t is the indicator variable of direct defaultly,
i.e. {Xi

t = 1} = {firm i default directly at time t}. Similar as Davis and Lo’s model, ζit is denoted
as the indicator of infection, i.e. {ζit = 1} = {firm i is infected at time t}. Finally, let {Zit , i ∈ Ω}
which is a sequence of discrete random variables either equal to 1 or 0, denote the default process.
Then the dynamics of Zit can be obtained by the following recursive relation

Zit = Zit−1 + (1− Zit−1)[Xi
t + (1−Xi

t)ζ
i
t ]

Zi1 = Xi
1 + (1−Xi

1)ζi1

From this expression we can see that Zit is a time series which are first zero, then jump to one
when the firm i defaults. The default at time t is modeled by Xi

t + (1−Xi
t)ζ

i
t , which has the same

structure as Davis and Lo’s one period model.

This paper consider the following assumptions of the model:

Assumption 1 (Temporal independence of direct defaults). Xt = (X1
t , . . . , X

n
t ), t ∈ {1, . . . , T}

are mutually independent, but a dependency exists between the components of each vector.

Assumption 2 (Temporal independence of exchangeable infections). Yt = (Y 11
t , Y 12

t . . . , Y nnt ), t ∈
{1, . . . , T} are mutually independent, and the random variables {Y ijt , (i, j) ∈ Ω} are exchangeable,
independent of {Xi

t , t = 1, . . . , T, i ∈ Ω}.
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The second assumptions implies that all of the firms have the same chance to infect others.
And note that the extension of the model is still based on the one-period structure because of the
time-independence assumption. In the numerical and empirical tests of the paper, the author uses
some stronger assumptions:

Assumption 3 (Temporal independence of exchangeable direct defaults). Xt = (X1
t , . . . , X

n
t ),

t ∈ {1, . . . , T} are mutually independent, but the components of each vector are exchangeable random
variables.

In this case we will be allowed to apply De Finetti’s Theorem to model the dependence structure
of Xt and Yt.

Assumption 4 (i.i.d. direct defaults and i.i.d. contaminations). {Xi
t} and {Y ijt } are mutually

independent and Bernoulli distributed with parameter p and q respectively.

This assumption is of Davis and Lo’s model. The author would consider this in the numerical
test for comparison.
In addition, the author introduce the following notations:

• Θt: the set of firms declared in default up to time t.

• Γt: the set of the firms which did not default in the previous t periods.

• F it : the set of the infectious defaulting firms susceptible to infect firm i.

• ND
t : the number of spontaneous defaults without external influence occurred during period

t.

• Nt: the cumulated number of defaults occurred up to time t.

Note that the firms in the set Ω/F it are the ones which will not affect firm i even they are defaulted.
If firm j is included in F it , then we can specify a random variable Y jit as the indicator of contagion.
Y jit = 1 implies that the contamination link from an infectious firm j to a firm i is activated. Unlike
Davis and Lo’s model, the author assumes that the relationship between ζit and Y jit has a more
general form:

ζit = f(
∑
j∈F i

t

Y jit ), i ∈ Ω

where f : {0, . . . , n} → {0, 1}. For example, setting f(x) = 1x≥1 implies that any activated infection
links causes an indirect default (Davis and Lo’s model). In some cases the firm i will not default
until it is infected by more than one firms, therefore we can specify f(x) = 1x≥2 implies that two
or more infections are necessary to generate a new default.

One of the important assumptions of the paper is that Y jit , j = 1, 2, . . . are exchangeable. Thus if
the numbers of elements in F it , i = 1, . . . , n, say card(F it ) are the same, then so are the distributions
of

∑
j∈F i

t
Y jit . In this paper, the author assumes that card(F it ) is given by

card(Ft) = g(Nt−1, N
D
t )

where g : N2 → N. By specifying g we can determine the different sources of contagion, for example:

• Inter-periodic contagion: g(Nt−1, N
D
t ) = Nt−1. Only defaults up to time t − 1 can infect

other firms at time t.
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• Intra-periodic contagion: g(Nt−1, N
D
t ) = ND

t . Only spontaneous defaults in the same period
can infect others. Note that this is case of Davis and Lo’s model.

• Contagion from external sources: g(Nt−1, N
D
t ) = n0. An arbitrary number n0 denotes the

sources outside our portfolio or bond space Ω which might be able to contaminate the bonds
inside the portfolio.

• Combination of the three latter contamination modes. For instance, g(Nt−1, N
D
t ) = n0 +ND

t

implies both external sources and spontaneous defaults in period t can affect other firms.

4 Theoretical results

The goal of this paper is to find the distribution of the cumulative default process Nt. Like Davis
and Lo’s model, the distribution function can be explicitly computed. Suppose that we know the
distribution of Xt and Yt, then we can define the following coefficients:

Definition 1 (Coefficient of order k). The coefficient of order k for the set {Xi
t , i ∈ Γ} is

µk,t(Γ) =
1

Ckcard(Γ)

∑
j1<j2<···<jk

P (Xj1
t = 1 ∩ · · · ∩Xjk

t = 1)

µ0,t(Γ) = 1 (including if Γ = ∅)

The coefficient of order k for the set {Y ijt , (i, j) ∈ Γ} is

λk,t = P (Y 1
t = 1 ∩ · · · ∩ Y kt = 1), k ≥ 1

λ0,t = 1

The coefficient of order k for the set {ζit , i ∈ Γ} is

ξk,t(g(u, l)) = P (ζ1
t = 1 ∩ · · · ∩ ζkt = 1|Nt−1 = u,ND

t = l), k ≥ 1

ξ0,t(g(u, l)) = 1

Note that if the assumption 3 holds, then P (Xj1
t = 1 ∩ · · · ∩Xjk

t = 1) are equal for all different
j1, . . . , jk because Xt are exchangeable. Therefore we would have a simpler expression of µk,t =
P (X1

t = 1 ∩ · · · ∩Xk
t = 1). And that is the reason for which we can also set λk,t to have a similar

expression.
Since ζit is given by the function of Y jit , the coefficient of order k for ζit is determined by λk,t.

In fact, for any function f such that ζit = f(
∑
j∈F i

t
Y jit ), we have

ξk,t =

zk∑
γ=0

ηk,z(γ)

zk−γ∑
j=0

Cjzk−γ(−1)jλj+γ,t

where ηk,z(γ) =
∑
γ1∈{0,...,z} f(γ1)Cγ1z ηk−1,z(γ − γ1), η1,z(x) = 1x≤zf(x)Cxz and η0,z(x) = 1x=0.

Suppose that the distribution of Xt and Yt are given, then we can obtain the main results of
this paper. For the one period model

Zi = Xi + (1−Xi)ζi, i ∈ Ω

we have the following theorem:
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Theorem 1. under assumptions 1 and 2, if T = 1 then the default’s number law is given by

P (N = r) = P (
∑
i∈Ω

Zi = r)

= Crn

r∑
k=0

Ckr

n−r∑
α=0

Cαn−rξα+r−k,1(g(0, k))

n−k∑
j=0

Cjn−k(−1)jµj+k(Ω)

For the multi-period model

Zit = Zit−1 + (1− Zit−1)[Xi
t + (1−Xi

t)ζ
i
t ]

we have the following theorem:

Theorem 2. under assumptions 1 and 2, the defaults’ number law is given by

P (Nt = r) =
∑
θt⊂Ω

card(θt)=r

P (Θt = θt)

where Θt is the set of firms declared in default up to t and where

P (Θt = θt) =

r∑
u=0

∑
θt⊂Ω

card(θt)=r

P (Θt = θt|Θt−1 = θt−1)P (Θt−1 = θt−1)

where

P (Θt = θt|Θt−1 = θt−1)

=

r−u∑
m=0

∑
Mt⊂θt−θt−1

card(Mt)=m

ρ(Mt,Ω− θt−1 −Mt)

n−r∑
j=0

Cjn−r(−1)jξj+r−u−m,t(u,m)

ρ(A,B) = P (∀i ∈ A,Xi
t = 1 et ∀i ∈ B,Xi

t = 0) ∀A,B ⊂ Γt−1

with card(θt) = r and card(θt−1) = u, u ≤ r.

Note that we would have a simpler expression of these two theorems if the assumptions 3 or 4
holds. So the only thing left is to model the distribution of Xt and Yt. We know that the marginal
distributions of Xi

t and Y jit are Bernoulli random variables. So we need to specify the dependence
structure of them. Suppose that the assumption 3 holds, that is, X1

t , . . . , X
k
t are part of an infinite

sequence of exchangeable Bernoulli random variables. Then by De Finetti’s theorem, there exists a
random variable ΘXt

which takes value in [0, 1] and its cumulative distribution function FΘXt
such

that

P (X1
t = 1, . . . , Xk

t = 1) =

∫ 1

0

θkdFΘXt
(θ)

Therefore, by specifying the distribution of ΘXt
, the coefficient of order k for Xt is equal to the

k-th moment of ΘXt :
µk,t = E[Θk

Xt
]
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Similarly, we can define the dependence structure of Yt and have

λk,t = E[Θk
Yt

]

In the rest of this paper, the author assume that for all t, ΘXt
and ΘYt

follow the Beta distribution
with mean p, q and variance σX , σY respectively.

5 Numerical applications

In this part, we first investigate the effect of exchangeability, between direct defaults and infections.
We then study the fit of the model to price synthetic CDO tranches. Using the certain restriction
of the model , we could compare the calibration performance of the model on iTraxx data before
and during the crisis.

5.1 Effect of model parameters on the dynamics of loss distribution

First, we define 4 reference models, which have some common characteristics: consider 10 firms, on
a 10-period time interval, with a direct default probability p = 0.1 and infection probability q = 0.2.
The four models are different in the feature of direct defaults or infections, i.i.d. or not and on the
infections number required to cause a default. The four models are presented as follows:

• model 1: σX = 0, σY = 0, f(x) = 1x≥1 (i.i.d. case, one required contamination)

• model 2: σX = 0, σY = 0, f(x) = 1x≥2 (i.i.d. case, two required contamination)

• model 3: σX = 0.2, σY = 0.2, f(x) = 1x≥1 (exchangeable case, one required contamination)

• model 4: σX = 0.2, σY = 0.2, f(x) = 1x≥2 (exchangeable case, two required contamination)

Then, recall the function of ξk,t(z), which gives the probability of loss distribution. We could get
the the evolutions of expectation and variance of Nt as a function of t, for all of the four models.

Figure 1: Evolution of E[Nt] and V [Nt] as a function of t

6



From the right side of Figure 1, the mean of the default number is increasing with time, which
is intuitively consistent with the fact that we expect more defaults in a larger period of time. For
models 3 and 4, the direct defaults and infections increase due to the hidden factors. For the group
of models 1 and 2, the distribution of Nt is more dispersed, then the impact of such a dispersion is
greater than that of models 3 and 4. For models 2 and 4, the contagion effect is weakened, so the
mean of the loss distribution is mainly explained by the mean of the direct defaults. And that is
the reason why their means are smaller.
From the left side of Figure 1, we can see that the variance of the loss distribution is a hump-shaped
function of time. It is obvious that the dispersion level increases as time goes by. However, when
the expected number of defaults comes to a critical threshold, the number of expected surviving
firms decreases, then lead to a decrease in the dispersion level of the loss distribution. For models 1
and 3, increasment occurs earlier because the expected number of defaults is greater. For models 3
and 4, the variation in the hidden random variables implies a larger increase of the variance of Nt.

Figure 2: Evolution of P (Nt ≥ 6) and P (Nt = 10) as a function of t

Figure 2 shows the evolution of P (Nt ≥ k), for respective fixed number k = 6 and k = 10. We
can see that the growth of the variation of Nt does not lead to the increase of P (Nt ≥ 6), especially
when this last probability is larger in the independence case. However, if we consider less frequent
events that all firms default is plotted, we find that the impact of exchangeability is much more
explicit. This case makes sense, since the increase of the dispersion level of Nt tends to emphasize
the tail of the loss distribution.

5.2 Calibration on liquid CDO tranche quotes

Next, we will move on to examine the fit of the model to tranche spread of the 5 years iTraxx
Europe main index, which is the most liquid segment part of the market, at two fixed points in
time, March 1st 2007 and January 31st 2008, which are respectively before and during the credit
crisis. In iTraxx Europe main index, we have 125 investment grade CDS. For each tranche, we define
the attachment point as the level of subordination and the detachment point as the maximum loss
of the portfolio. To price the standard tranches, we give the definition of the cumulative loss per
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unit of nominal exposure:

Lt =

n∑
i=1

(1−Ri)Zit

where R denotes the recovery rate associated with name i.

Figure 3:

Then, let us get back to the model we consider for the calibration of CDO tranche quotes. Here
we use the beta-mixture model, the direct and contagion defaults are Bernoulli random variables
while the common hidden parameter is Beta-distributed. And the infectious entities is given by
g(k, γ) = n0 + γ where n0 = 1. We know that the computation of CDO tranche spreads merely
involves expectation of tranche losses. Because of the constant R, we can remark that the cumula-
tive loss is just proportional to the number of defaults. So we can use Nt, 0 ≤ t ≤ T , to compute
CDO tranche spreads.

Furthermore, the contagion model can be described by the vector of parameters α = (p, σX , q, R).
Our goal is to find out the optimal parameter set which minimizes the root mean square error:

RMSE(α) =

√√√√1

6

6∑
i=1

(
s̃i − si(α)

s̃i
)2

where s̃i denotes the market spreads and si(α) denotes the contagion model.
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From Table 1, the joint calibration of all tranche and the index is acceptable for 2008 crisis data
and 2007 data, excepted for the 3% − 6% mezzanine tranche. As for the optimal parameters, we
can see the great shift in credit spreads between these two periods. Even if the parameters are
relatively small, they may trigger a significant expected number of defaults due to the large number
of entities in the portfolio.

6 Conclusion

In this report, we study the extension contagion model proposed by Cousin et al. The extension
model modifies the Davis and Lo’s model from the original static form to a multi-period form.
Meanwhile it relaxes some assumptions in the original model to make it more flexible and practical
in real practice. By introducing multi-period recursive formula, the defaulted firms and infected
firms in the previous periods can infect the firms in latter periods which allows the explanation
of domino defaults. Specific functions can be set up to determine how many infections may lead
to a default. Additional dependencies of random variables are proposed, the default distribution
function can be depended on common macroeconomic factors. The authors has also investigated
the use of mixture distributions (Beta and Bernoulli) for default related random variables. They
validated the model by examining how the model parameters influence the loss distribution. After
all, they used the iTraxx Europe Main Index data to calibrate the model parameters and the results
fit well.
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