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1 Introduction

Nowadays, giant datasets are collected with lots of empirical information about the func-

tioning of almost every field of study, at a cost much lower than a few decades ago, for instance

biotechnology(McBride 2012), medical science(Groves 2013), and in particular business and

economics study(Einav and Levin 2013). One can be interested in the existing linkages be-

tween the different elements that included in a collection of the dataset. And that is the

reason why Network Analysis has emerged in recent years. Network Analysis is used to help

interpret the hidden interconnections between different elements in large dataset. With the

application of proper statistical tools, analysts can not only get the statistical results about

the data, but also plot the interconnections of large multivariate time series system in a

graphical representation that eases the interpretation of the real market observation. That

is to say, Network Analysis allow us to construct graphs representing the reality behind those

complex empirical datasets.

Stock markets behave as complex dynamic systems, and as such, it is critical to investigate



the dependencies (interactions) between the dynamics of the system variables (stocks, bonds,

etc.). It is common to associate such interactions with the notion of correlation, or similarity.

Indeed, much effort is dedicated to study and understand such stock cross-correlations in an

attempt to extract maximum market latent information that is embedded in the interactions

between the market variables.

One prominent feature in financial markets is the presence of an observed correlation

(positiveor negative) between the price movements of different financial assets. The presence

of a high degree of cross-correlation between the synchronous time evolution of a set of equity

returns is a well known empirical fact (Markowitz 1952, Eltonet al.2009, Campbellet al.1997).

The Pearson correlation coefficient (Pearson 1895) provides information about the similarity

in the price change behavior of a given pair of stocks. Much effort has been devoted to ex-

tracting meaningful information from the observed correlations in order to gain insights into

the underlying structure and dynamics of financial markets (Embrechtset al.2002, Morcket

al.2000,Campbellet al.2008, Krishanet al.2009, Asteet al.2010, Campbellet al.2008, Cizeauet

al.2001, Lalouxet al.2000, 1999, Plerouet al.1999, Podobniket al.2009, Pollet and Wilson

2010,Tumminelloet al.2010, Huanget al.2013, Forbes and Rigobon 2002).

Despite the meaningful information provided by investigating the correlation coefficient,

it lacks the capacity to provide information about whether a different stock(s) eventually

controls the observed relationship between other stocks. To overcome this issue we introduce

the use of the partial correlation coefficient (Baba et al.2004), and its applications.

The presence of significant cross-correlations between the synchronous time evolution of

a pair of equity returns is a well-known empirical fact. The Pearson correlation is commonly

used to indicate the level of similarity in the price changes for a given pair of stocks, but it

does not measure whether other stocks influence the relationship between them. To explore

the influence of a third stock on the relationship between two stocks, we use a partial

correlation measurement to determine the underlying relationships between financial assets.



1.1 Network Analysis

In mathematics, the traditional way of representing networks is using graphs, which can

be generally defined as a collection of nodes connected by lines. Here we will introduce a bit

of graph theory. A graph is an ordered pair as following:

G = (V ; ε) (1)

The first one represents nodes while the second one is edges connecting nodes. We consider

two main characteristics of a network: directionality and weight. First, If an edge from

node i to node j is different from an edge from j to i, then the graph is directed. On the

other hand, if all the links between nodes don’t have a particular direction, then the graph is

undirected. Next, The difference between weighted and unweighted networks has to do with

the relative weight of each edge. In weighted networks, the thickness of the edge depends on

the intensity of the correlation between two nodes. Due to the specific resources and purpose

of our study, we use undirected and weighted graphs.

As briefly introduced in the above section, the final aim of network analysis is to represent

large data collection as a network with which would be easy to interpret the linkages between

different elements. In this article, our data collection is a multivariate time series. That is to

say, we will apply network analysis using values of a determined number of variables taken

in successive periods of time. In our study, the stock prices and trading volumes at different

time points for each stock can be regarded as a time series. Without loss of generality, we

suppose that we have N variables for T periods of time.

In this article, the final output of the network analysis of the particular multivariate time

series could be displayed in a graph, in which all the target stocks are represented by nodes

and the interconnections between them are plotted as the edges linking the nodes.



1.2 Partial Correlation Network

1.2.1 Partial Correlation Matrix

To study the relationship between two stock returns, say yi and yj, the common method

is to calculate the Pearson correlation coefficient:

ρraw(i, j) =
(yi − µi) ∗ (yj − µj)

σi ∗ σj
(2)

where µ∗ represents average and σ∗ denotes the standard deviation.

However, in some cases, a strong correlation not necessarily means strong direct relation

between two stocks. For example, two stock in the same market can be influenced by common

microeconomic factor and investors’ herd behavior. To study the direct correlation of the

performance of these two stocks, we need to get rid of the common driving factors, which here

are represented by the market index. Partial correlation quantifies the correlation between

variables, for instance stock returns, when conditioned on one or several other variables

(Kennet 2010). Thus, we introduce partial correlation network in this section.

One particular assumption of the partial correlation network model is the sparsity of the

dataset. Sparsity refers to the fact that the given network is not complete. In other words,

not every node is connected with any other node in the dataset. Recall that a zero element

in the correlation matrix implies the absence of an edge between two variables, therefore the

correlation matrix of a sparse network contains a great number of zeros. In fact, this kind

of sparse networks have been studied in many areas, e.g. genetics networks, social networks

and so on. Thus, it is reasonable to assume that the data from stock market can also be

considered as sparse.

1.2.2 Space

In this section, we take advantage of Lasso for detecting pairs of stocks having nonzero

partial correlations among a large dataset. Lasso, stands for Least Absolute Shrinkage



and Selection Operator, has been a very effective tool to obtain the estimations of partial

correlations since Year 1996. It allows to shrink a number of estimated coefficients enough

to end up with a sparse network. Lasso estimators are calculated as following:

θλ = argmin
θ

n∑
i=1

(Yi −XT
i θ)

2 + λ

N∑
j=1

| θj | λ ≥ 0 (3)

The great thing about Lasso estimation is that, with proper λ, it selects the variables

which better explain the linkage between them. It shrinks the parameters corresponding

to the variables which are not so explanatory to exact zeros, keeping the parameter of the

worthy variables different from zero. Therefore, we introduce sparse regression model by

imposing the l1 penalty on a suitable loss function to solve the high-dimension-low-sample-

size problem.

Suppose that (y1, ...yp)T has a joint distribution with mean µ and covariance
∑

, where∑
is a p by p positive definite matrix. Denote the partial correlation between yi and yj

by ρij(1 ≤ i ≤ j ≤ 1). Also, here we define concentration matrix
∑−1 by (σij)p∗p. It is

known that ρij = − σij√
σii∗σij . Thus, we denote βij = −σij

σii
= ρij ∗

√
σjj/σii. Recall that we

have several time periods, we suppose that Y k = (yk1 , y
k
2 , ..., y

k
p)
T for k = 1, ..., T . Denote the

sample of the ith variable as Yi = (yi1, y
i
2, ..., y

i
p)
T i = 1, ..., T . Thus, we estimate the partial

correlation θ by minimizing the penalized loss function:

Ln(θ, σ, Y ) =
1

2
(

p∑
i=1

ωi‖ Yi −
∑
j 6=i

βijYj ‖
2
) + λ

∑
1≤i<j≤p

| ρij | (4)

=
1

2
(

p∑
i=1

ωi‖ Yi −
∑
j 6=i

ρij ∗
√
σjj/σiiYj ‖

2

) + λ
∑

1≤i<j≤p

| ρij | (5)

where σ = {σii}pi=1, Y = {Yk}nk=1 and ω = {ωi}pi=1. The outcome of the application of this

model is the matrix containing the estimations of the partial correlations between variables.

However, the performance of this model depends on the choice of the tuning parameter λ.



1.2.3 Tuning Parameter

The tuning parameter λ controls for the amount of shrinkage in the estimation procedure.

First, in the case λ takes a value equal to zero, no shrinkage is produced and the estimators

are exactly the same as in the ordinary least square case. Second, in the case λ takes a value

big enough, all the lasso estimators might be shrunk to zeros so that there is no estimator

different from zero. Thus, only when we pick a suitable λ, we could have a proper number

of parameters been shrunk to zero.

In practice, different values of λ are estimated for the partial correlation networks, and

afterwards, information criteria like AIC or BIC are applied to determine the optimal value

of λ. In general, BIC is preferred to AIC due to its simplicity and computational easiness.

The rest of the article is organized as follows. In section 2, we will give full details about

the empirical dataset and how we pre-process with it in our project. In Section 3, we describe

the time-varying partial correlation network with our kernel smoothing approach. Once we

have theoretically explained how the partial correlation network estimation method works,

an illustrated simulation is going to be carried out in the first part of Section 4. Afterwards,

we present our results with a number of plots in Section 4.2. In Section 5, a summary of the

main results and proposal about the future work are given.

2 Data

The S&P 500 index is probably the most commonly referenced U.S equity benchmark

for determining the state of the overall economy. S&P Dow Jones Indices updates the

components of the S&P 500 periodically, typically in response to acquisitions, or to keep

the index up to date as various companies grow or shrink in value. Between 1/1/2005 and

1/1/2015, 188 index components were replaced by other components. In our paper, we

propose to track the performance of the largest and most dominant American companies

included in the index. So, we pick 233 stocks as our target stocks, which have been included



in the index for 12 years, from the year 2002 till the year 2013.

Through Daily TAQ(Trade and Quote), which provides us with FTP access to all trades

and quotes for all issues traded on NYSE for all the trading days, we download the 1-minute

stock data using our own target stock lists. We chose September 2013 as our test sample.

So our dataset includes associated key financials such as time of trading, stock price, market

capitalization of that month.

Before we apply the model to our data, we shall ensure that supplied data is clean,

correct and useful. In our raw data, there are included 1-minute price, time of trading and

trading volume of all the 233 stocks. However, there are some issues worthy of our attention.

Firstly, we have, inevitably, lost some data on the certain trading time points during one

month. Secondly, the 1-minute trading volume should be within a certain range, to make sure

that the future calculation will not spill over. So before the introduction of our theoretical

method, we have to process with data loss and data cleaning.

For every one of our target stocks, there are no more than 2 percent of data has been

left blank. To deal with the data loss, we use linear interpolation to fill the gap in our raw

data. For instance, if there is no record at the certain time during a trading day, then we will

use two closest stock prices and trading volume to get the estimated value. To calculate the

weighted average as unknown prices and trading volume, the weights are inversely related

to the distance from the known points to the unknown point. In this way, we successfully

get all the data at all the time points filled.

In our methodology, we will use an iterative algorithm to calculate the parameters of

partial correlation matrix. So we have to get rid of those trading volume records which are

beyond the limit of acceptability or fairness. First, all the trading volume data should be

positive. Secondly, the value of trading volume should not exceed the certain range, since

unreasonable large value will limit the calculation of partial correlation matrix. Without loss

of common sense, we eliminate those 1-minute trading volumes whose values are negative or

more than 1 million.



After processing with the raw data, we have more concerns before application of real

data to our model. In our article, we will use 30 minute as interval of two neighbor records.

That is to say, we calculate the average values of stock prices and trading volume in half an

hour. During one trading day, whose trading period last from 9:30 in the morning till 4:00

in the afternoon, we have 14 records of prices and trading volumes for every target stock.

For September 2013, we have 20 trading days. Thus, we have 280 records of stock prices and

trading volumes for 223 target stocks in the whole.

To have a better understanding of the macrostructure of the stock market, we choose

two measurements to do the quantitative research: stock returns and Volume-price trend

indicators. Stock return is a traditional measure of a company’s performance over time.

Here we use single period return. Next, to measure the balance between a stock’ demand

and supply, we introduce Volume-price trend (VPT), which is an technical analysis indicator

to relate price and volume in the stock market. VPT is based on a running cumulative

volume that adds or subtracts a multiple of the percentage change in share price trend and

current volume, depending upon the investment’s upward or downward movements. We have

the formula as following:

V PT = V PTprev + volume ∗ pricenow − priceprev
priceprev

(6)

V PT = V PTprev + volume ∗ return (7)

Thus, we use stock returns and VPT indicators as our measurement to the performance of

target stocks and stock market balance.



3 Time-varying partial correlation network analysis

3.1 Local Polynomial Regression

In this section, we introduce a class of regression techniques that achieve flexibility in

estimating the regression function, say f(X), by using only those observations close to the

target point x0. In such a way, the resulting estimated function f̂(X) is smooth. This

localization is achieved via a weighting function or kernel Kλ(x0, xi), which assigns a weight

to xi based on its distance from x0. Recall Nadaraya-Watson kernel-weighted average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

(8)

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D(
| x− x0 |

λ
) (9)

with

Dt =


3
4
(1− t2) if | t |≤ 1

0 otherwise

(10)

Thus, we have progressed from the raw moving average to a smoothly varying locally

weighted average by using kernel weighting. Furthermore, locally weighted regression solves

a separate weighted least square problem at each target point x0:

min
α(x0),β(x0)

N∑
i=1

Kλ(x0, xi)[yi − α(x0)− β(x0)xi]2 (11)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Without stopping local linear fits, we can fit

local polynomial fits of any degree d,



min
α(x0),βj(x0), j=1,...,d

N∑
i=1

Kλ(x0, xi)[yi − α(x0)−
d∑
j=1

βj(x0)xi]
2 (12)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. Since local linear fits can help bias dramatically

at the boundaries at a modest cost in variance, we will apply this kernel smoother to joint

sparse regression model as noted in the previous section.

3.2 Proposed Method

In this section, we will deduct our own methodology: apply kernel smoothers to the

sparse regression model. Thus, the penalized regression problem will be as following:

min
N∑
i=1

D(
| t− t0 |
hλ(x0)

)[yi − β0 − β1xi1 − ...− βjxij − ...− βdxid]2 s.t. ‖ β ‖≤ λ (13)

which can also be written as

min[
N∑
i=1

D(
| t− t0 |
hλ(x0)

)(yi − β0 −XT
i β)

2 + λ

p∑
j=1

| βj |] (14)

Consider a coordinate descent step for solving the above problem. That is, suppose we have

estimates β̃0 and β̃l for l 6= j, and we wish to partially optimize with respect to βj. Denote by

R(β0, β), the objective function in (14). We would like to compute the gradient at βj = β̃j,

which only exists if β̃j 6= 0. If β̃j > 0, then

∂R

∂βj
|β=β̃= −2 ∗

N∑
i=1

D(
| t− t0 |
hλ(x0)

)xij(yi − β0 −XT
i β) + λ (15)

A similar expression exists if β̃j < 0, and β̃j = 0 is treated separately. Simple calculation

shows (Donoho 1994) that the coordinate-wise update has the form

S(−2 ∗
N∑
i=1

D(
| t− t0 |
hλ(x0)

)xij(yi − ỹ(j)i ), λ)→ β̃j (16)



where

ỹ
(j)
i = β̃0 +

∑
l 6=j

xilβ̃l (17)

is the fitted value excluding the contribution from xij, and hence yi− ỹ(j)i the partial residual

for fitting βj. S(z, γ) is the soft-thresholding operator with value


z − γ if z > 0 and γ <| z |

z + γ if z < 0 and γ <| z |

0 if γ ≥ | z |

(18)

Thus with smoother on time period, we compute the simple least-squares coefficient on

the partial residual, apply soft-thresholding to take care of the lasso contribution to penalty,

and then apply a proportional shrinkage for the ridge penalty.(Van der Kooij 2007)

4 Numerical Results

4.1 Illustrated Simulation

In order to check the performance of the joint sparse model to estimate partial correlation

networks, we process with an illustrated simulation. Based on the assumption of sparsity,

we create a true network with 20 elements and a total of 19 edges. Specifically, there are

3 hubs with three or more edges. Therefore the concentration matrix is a 20 ∗ 20 matrix.

Though it doesn’t represent a very big dataset, it is enough to perform a practical simulation

to analyze and get useful results.

First, we make n random observations from a multivariate normal distribution. The

number of N is 20 and their variance-covariance matrix used to generate those n observation

s is the inverse of the concentration matrix created in the first step. After that, the join

sparse regression is used to generate a concentration matrix from the random observations



obtained previously taking λ as the value of the penalty. Finally, we will get the adjacency

matrix. We then evaluate each method at a series of different values of the tuning parameter

λ.

In our simulation, we study for four different sample sizes n = {50; 100; 500; 1000}. The

tuning parameter λ, always proportional to the sample size, takes values from λ = 0.00 ∗ n

to λ = 1.00 ∗ n in a sequence of 0.05. Since the simulation is a random process, it must be

done many times in order to get accurate and unbiased results. To reach that end, for each

pair of λ and sample size values, we process with the network estimation for 1000 times.

In order to analyze the results obtained from the simulation, one graph will be showed

to study the features of the joint sparse regression model. Figure 1 will show how changes

in the penalty value affect the sparsity of the estimated network.

From Figure 1, we can see that there is a positive relationship between the penalty value λ

and sparsity. When λ increased, the total number of edges found decreases, so the estimated

network becomes sparser, moving from far more above the number of true edges to below

it when the penalization is too big. When the penalty value is zero, the number of edges

found is 190 for every sample size, which is the maximum possible number of existing edges

in a network of 20 variables. On the other hand, when the penalty is 1.00 ∗ n, sparsity

converges again for all sample sizes at a level below the true number of the edges in the

network. For different sample sizes, it is observed that for large values of n, the estimated

networks become very sparse and the number of edges estimated fall close to the number of

true edges. That is to say, in the case n is lower, the estimated networks become sparser

following a not-to-steep path until the true number of edges is reached, and once in there,

the number of edges estimated fall below the optimal value faster than with large sample

sizes as λ increases.



Figure 1: How does λ affect sparsity

4.2 Real Data

In the previous section, we have achieved the associated trading data of 233 target stocks.

For September 2013, we have 279 30-minute stock returns and 280 30-minute VPTs for every

stock. Thus, our real dataset is composed of 233 variables containing 279 time points for

each one, standing as a reasonable size for our estimations to end up with significant results.

The procedure to reach the estimated network is based on calculating the partial correlation

matrices of the dataset and plotting its network. It is performed by a script in R, since we

used the Space package developed by Peng(2009).

Firstly, we import the 233*279 matrix, where each column is named with the time points

and each row is named with the ticker stock symbol. Go through each time point, we

apply kernel smoother on time to get the partial correlation matrix is generated by running



the space.joint command. Here, we choose 30 as the moving window size. Afterwards, we

use Qgraph package in R to plot each network on each time point. Thus, we have 279

plots of partial correlation networks of stock returns. Here in this article, we picked 4 of

them at different Tuesday in September 2013. The interval of these 4 figures are the same,

which is 14 ∗ 5 = 70. See Figure 2. In the pictures, each node represents a stock and

each edge represents a partial correlation between two stocks. Green edges indicate positive

correlations, red edges indicate negative correlations, and the width and color of the edges

correspond to the absolute value of the correlations: the higher the correlation, the thicker

and more saturated is the edge.

As mentioned in previous section, there are quantitative methods as BIC and AIC which

enable to find out the optimal λ for the model. In practice, the penalty value of the real

data application has been chosen on the results obtained from several of tryings. That is to

say, the tuning process has been based on observing the networks from a wide range of λ

values and choosing the one that looks more efficient for our study. For instance, if we choose

λ = 7e−6, the partial correlation network at time 9:30 am on September 3rd, 2013 is shown

in Figure 3a; while if λ = 7 ∗ e( − 5) is chosen, then the corresponding partial correlation

network at exact the same time, is shown in Figure 3b

From Figure 3a, we can see that the choice of λ = 7e−6 must be too small, since the

shrinkage of Lasso doesn’t have much effect on partial correlation. We can almost read no

useful information from the redundant partial correlation network in Figure 3a. For Figure

3b, we can read clear information of the significant partial correlations between two stocks.

So the choice of λ = 7e−5 is a good one. In practice, remind that the analysis of the causes

behind the nature of the partial correlations are not a goal of the project, therefore the

selection of the optimal λ is not a crucial point in our study, as long as we are working in a

close interval from it.

Furthermore, we are interested in maximum eigenvalue in the partial correlation matrix

at the certain time point. For the time being, the change of maximum eigenvalues is shown in



(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Figure 2: Partial Correlation Network of stock return at 9:30am on (a)September 3rd, 2013;
(b)September 10th; (c)September 17th; (d)September 24th. (From left to right, top to down)



(a) (b)

Figure 3: (a)The partial correlation network at time 9:30 am on September 3rd, 2013 when λ =
7∗e−6; (b)The partial correlation network at time 9:30 am on September 3rd, 2013 when λ = 7∗e−5

Figure 4a, while the percentage of the maximum eigenvalue over the sum of all the eigenvalues

in the partial correlation matrix is shown in Figure 4b.

As we know, the maximum eigenvalue changes through time. So it could be regarded as

a time series data. Here we fit this time series data with AR(1) model. The Autocorrelation

plot is shown in Figure 5a while the partial Autocorrelation plot is shown in Figure 5b.

Moreover, we want to have a general look at the performance of the maximum eigen-

value time series with respect to different λ. We chose 20 values of λ, which is respec-

tively 1e−3, 3e−3,5e−3,7e−3,9e−3, 1e−4, 3e−4,5e−4,7e−4,9e−4,1e−5, 3e−5,5e−5,7e−5,9e−5,1e−6,

3e−6,5e−6,7e−6,9e−6. Next, we draw the 3 dimension surface of the results, from different

angle. See Figure 6.



(a) (b)

Figure 4: (a)Maximum Eigenvalues at different time points; (b)The percentage of Maximum Eigen-
values at different time points

(a) (b)

Figure 5: (a)ACF plots of maximum eigenvalues of Partial Correlation Matrices; (b)PACF plots of
maximum eigenvalues of Partial Correlation Matrices



Figure 6: Three dimension plot of maximum eigenvalues with different λ

From the above 3D version plots of maximum eigenvalues with different λ, we can see

that there are some peak points. Specially at the 121st time point and 165th time point. We

are interested in such points so that we track back to these two exact times. For the 121st

time point, it refers to 1:30pm on September 13rd, 2013; while the 165th time points refers

to 2:30pm on September 18th, 2013. Tracking back to that date, a meeting of the Federal

Open Market Committee was held in the offices of the Board of Governors of the Federal

Reserve System in Washington, D.C., on Tuesday, September 17, 2013, at 1:00 p.m. and

continued on Wednesday, September 18, 2013, at 8:30 a.m.

5 Summary and Future Work

5.1 Summary

Throughout this project, the joint sparse regression model with kernel smoother on time is

proposed to estimate partial correlation networks under the assumption of sparsity. Hence,



after the setting of the theoretical deduction on the method and the "space" estimation

tools, we confirm the efficiency and validity of our proposed method, especially in the case

of presenting cross-sectional interconnections between stocks in financial market.

5.2 Future Work

5.2.1 Vector Autoregression with One Lag

The above methods come out with the undirected partial correlation matrices. However,

we may want to look into the relationship between the stocks with direction. Here we

introduce VAR(1) model: define the matrix is as Yt , then

Yt = AYt−1 + εt (19)

Ỹt = AYt−1 (20)

Ỹt
T

= ATY T
t−1 (21)

(22)

5.2.2 More time periods

We will also draw the plots of VPT in more time periods such as August 2013 and

October 2013. More simulation study will be applied.
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