
An Iterative Algorithm for Optimal Variable Weighting in K-means Clustering

Shaonan Zhang, Shanshang Li, Jiaqiao Hu, Haipeng Xing, Wei Zhu

Department of Applied Mathematics and Statistics

Stony Brook University, NY, 11794-3600

The K-means clustering method is a widely adopted clustering algorithm in data mining and pattern
recognition, where the partitions are made by minimizing the total within group sum of squares based on
a given set of variables. Weighted K-means clustering is an extension of the K-means method by assigning
nonnegative weights to the set of variables. In this paper, we aim to obtain more meaningful and interpretable
clusters by deriving the optimal variable weights for weighted K-means clustering. Speci�cally, we improve
the weighted k-means clustering method of Huh and Lim (2009) [1] by introducing a new algorithm to
obtain the globally optimal variable weights based on the Karush-Kuhn-Tucker conditions. We present the
mathematical formulation for the clustering problem, derive the structural properties of the optimal weights,
and implement an recursive algorithm to calculate the optimal weights. Numerical examples on simulated
and real data indicate that our method is superior in both clustering accuracy and computational e�ciency.
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1 Introduction

The K-means clustering method is a classical centroid-based clustering algorithm widely used in machine
learning, data mining, pattern recognition, image analysis, and bioinformatics [2,3]. Assuming that we have
n objects with m variables: xi = (xi1, xi2, . . . , xim) , i = 1, 2, . . . , n, the objective of K-means clustering is to
�nd the k cluster centroids that minimize the total within-group sum of squares (WGSS) as follows:

k∑
g=1

∑
i∈Ig

m∑
j=1

(xij − cgj)2, (1)

where Ig is the set of objects belonging to cluster g = 1, 2, . . . , k and cg = (cg1, cg2, . . . , cgm) is the centroid of
xi. Note that in K-means clustering, the cluster number k often needs to be predetermined. This is usually
carried out in practice either by experimenting with a set of values of k and then picking the best one or
through additional information such as prior knowledge of problem structure or expert experience [4].

In standard K-means algorithm, the data are usually column-wise standardized and then iteratively
partitioned into k clusters. The most commonly used standardization approach [5,6] is to scale each variable
by the variable mean x.j and standard deviation sj :

zij =
xij − x.j

sj
. (2)

However, this standardization approach is not unique and needs to be chosen carefully based on the un-
derlying data structure [7]. Intuitively, the variables may have di�erent degrees of in�uence on the data
structure. Thus, the clustering results may rely heavily on some variables while others may only enter the
optimization problem in a super�cial way. In 1984, Desarbo and colleagues [8] proposed a weighted K-means
clustering algorithm that assigns each variable a non-negative weight to re�ect its contribution to the WGSS.
Since then, a varieties of weighted K-means clustering analysis algorithms have been proposed by Bradley
and Usama [9], Kanungo, Tapas [10],Huang, Joshua Zhexue [11], and Modha, Dharmendra S. [12]. However,
one common issue of these approaches is that the underlying algorithm may su�er from unstable behav-
ior, because the optimal variable weighting can be very sensitive to the underlying data and the choice of
parameters. In particular, it has been observed that the variable weights may subject to large �uctuation
with even a small change in the parameter setting or the underlying dataset by removing some observations.



To address this instability issue, Huh and Lim proposed a revised weighted clustering objective function by
�nding the variable weights w = (w1, w2, . . . , wm) that minimize the sum of the WGSS with a penalty term
as follows:

k∑
g=1

∑
i∈Ig

m∑
j=1

wj(zij − cgj)2

n− 1
+ α

m∑
j=1

(wj − 1)2

m− 1
, (3)

where α is an additional parameter that penalizes the increased discrepancy among variable weights. When
the penalty parameter α is chosen large, the minimization of equation equation (3) forces all weights to be
close to 1, leading to small di�erences among variable weights, whereas small values of α generally allow large
di�erences among variable weights. The idea is to stabilize the variable weights by carefully choosing the
penalty parameter α. Huh and Lim proposed to use the process optimization in response surface methodology
to estimate the optimal variable weights. However, the performance of their method is not very satisfactory
on large data sets and the Nelder-Mead optimization algorithm [13] they used can be time consuming and
may not guarantee a global optimal solution.

In this paper, we aim to improve the work of Huh and Lim by introducing a new algorithm to �nd the
globally optimal variable weights in weighted K-means clustering. In Section 2, we analyze the structural
properties of the optimal variable weights based on the well-known Karush-Kuhn-Tucker conditions [14,15]

and propose an iterative procedure that exploits these properties to e�ciently calculate the optimal variable
weights. We carry out computational experiments in Section 3 to illustrate the performance of the algorithm
and conclude the paper in Section 4. Our experimental results on both simulated and real data sets indicate
that our algorithm is promising and may yield superior performance over existing approaches, especially on
large data sets.

2 The Proposed Method

In this section, we formulate equation (3) as an optimization problem with inequality constraints and
show that the optimal variable weights have a closed-form representation. We then develop an iterative
algorithm for estimating the optimal variable weights in Section 2.1, calculate initial β (within-cluster mean
squares on each variable) in Section 2.2, and propose a new data-driven approach to select the penalty
parameter α in Section 2.3.

Note that by switching the order of the summations, the objective function (3) can be equivalently
written as a function of variable weights (w1, w2, . . . , wm):

m∑
j=1

wj

k∑
g=1

∑
i∈Ig

(zij − cgj)2

n− 1
+ α

m∑
j=1

(wj − 1)2

m− 1
. (4)

Assuming that the true cluster centroids cg (g = 1, 2, . . . , k) are known, we denote the coe�cient of wj as

βj , i.e., βj =
∑k
g=1

∑
i∈Ig

(zij−cgj)2
n−1 . Without loss of generality, we assume that β1 ≤ β2 ≤ . . . ≤ βm. For a

given α, the optimal variable weights can be obtained as the solution to the following quadratic optimization
problem:

Minimize : f(w;α) =
∑m
j=1 βjwj + α

∑m
j=1

(wj−1)2
m−1

Subject to :
∑m
j=1 wj = m;

wj > 0, j = 1, 2, . . . ,m. (5)

Thus, by applying the method of Lagrange multiplier, equation (5) can be expressed as:

L(w, λ, µ;α) =

m∑
j=1

βjwj + α

m∑
j=1

(wj − 1)2

m− 1
+ λ(

m∑
j=1

wj −m) +

m∑
j=1

µjwj , (6)

where λ and µj are the corresponding Lagrange multipliers. It is well-known that the optimal weights
(w1, w2, . . . , wm) satisfy the Karush-Kuhn-Tucker (KKT) conditions:



∂L

∂wj
= βj +

2α

m− 1
(wj − 1) + λ+ µj = 0, j = 1, 2, . . . ,m (7)

m∑
j=1

wj −m = 0 (8)

µjwj = 0, j = 1, 2, . . . ,m (9)

wj > 0, j = 1, 2, . . . ,m. (10)

The optimal variable weights can be shown to satisfy the following equations:wj(α, topt) = m
topt

+
(βtopt

−βj)(m−1)
2α j ≤ topt

wj(α, topt) = 0 j > topt,
(11)

where topt is the optimal number of non-zero variable weights and βt =
∑t

i=1 βi

t ; see Appendix 1 for detailed
derivation steps.

2.1 An Iterative Algorithm

Equation (11) provides the closed-form expression for optimal variable weights in k-means clustering
when β (within-cluster mean squares on each variable) is known for all variables. However, the actual value of
β is unknown unless the clustering partition is given. To address this issue, we propose a recursive procedure
to iteratively estimate β, α, and subsequently the optimal variable weights:

Step 1. Standardize data matrix using equation (2). Specify an initial β and the corresponding penalty
parameter α.

Step 2. Given β and α, calculate the optimal variable weights (w1, w2, . . . , wm) according to equation
(11).

Step 3. Run k-means clustering on weighted variable Z∗ = Z ∗D, where D is a diagonal matrix with
diagonal entries Diag(D) = (

√
w1,
√
w2, . . . ,

√
wm). Calculate within-cluster mean squares on each variable

βj and update penalty parameter α accordingly.
Step 4. Repeat steps 2 and 3 until the parameter β converges.

The choices of initial β values and the determination of the penalty parameter α are discussed in detail
in the following subsections.

2.2 Initial β Estimation

From equation (4), we have the following linear relationship between the overall within cluster sums of
squares on weighted variables Z∗ and β

m∑
j=1

βjwj =

m∑
j=1

wj

k∑
g=1

∑
i∈Ig

(zij − cgj)2

n− 1

=
1

n− 1

k∑
g=1

∑
i∈Ig

m∑
j=1

(z∗ij − c∗gj)2, (12)

where z∗ij = zij
√
wj , c

∗
gj = cgj

√
wj are the re-scaled variables and the corresponding cluster centroids.



Given the constraint that all the variable weights wj sum up to m, we formulate the following canonical
mixture linear model with β as coe�cients and y being the within cluster mean squares on weighted variable
Z∗. Here ε is the white noise error term.

y =

m∑
j=1

βjwj + ε. (13)

To estimate the initial β, we apply a {m, 2} simplex lattice design [16] with center point to generate initial
variable weights and estimate β afterward. Generally, a {m, p} simplex lattice design generates a set of
m-dimensional points (x1, x2, . . . , xm) such that each component can take p+1 equally spaced values from
0 to 1, that is, xi = 0, 1/p, 2/p, . . . , 1; for i = 1, 2, . . . ,m and the sum of all the components equal to 1.

Graphically, it consists of all m vertices and p-equal-division-points on

(
m

2

)
edges of (m−1) dimensional

simplex. For example (See Figure 1), a {3,2} simplex lattice design consists of 6 points, which are the 3
vertices, and the midpoints of 3 edges.

Figure 1: An example of {3,2} simplex design with the center point

In our algorithm, we generate an {m, 2} simplex lattice design to obtain a set of vectors p = (p1, p2, . . . , pm).
Then for each design point p, we run the k-means clustering on weighted variable with weight w = m ∗ p
and calculate the overall within cluster sum of squares and subsequently the response variable y in model
(13). After this, we �t the linear model and calculate the least square estimators as the initial β.

2.3 Selection of Penalty Parameter α

In the optimal solution, equation (11), the nonnegative parameter α is the penalty for heterogeneity in
variable weighting, and also a tuning parameter to stabilize the optimal weights.

It can be shown that when α stays in a certain range, the clustering partition remains the same. In

fact, we prove in Appendix 2 that there is a unique vector g =
{
gi :=

t(βi−βi)(m−1)
2m , i = 1, 2, . . . ,m

}
that

splits α into (m + 1) ranges and the optimal clustering partition remains the same when α changes within
each range. Therefore, the determination of α is essentially equivalent to determining the value of t so that
α ∈ (gt, gt+1] is chosen. For simplicity, we will choose α = gt+gt+1

2 after t is determined.
Here we introduce an e�cient measurement, Reduced Variation (RV), to determine t. The RV of the

i th variable is de�ned as follows:



RVi =
1− βi∑m

i=1(1− βi)
;

m∑
i=1

RVi = 1. (14)

Then we will select

t∗ = min

{
t |

t∑
i=1

RVi >
m− 1

m

}
(15)

and therefore

α =
gt∗ + gt∗+1

2
(16)

Similar to the variable selection problem, there is always an argument about the balance between
removing noise and losing information. From our experience on various datasets, the threshold of m−1m on
cumulative RVs always shows stable performance in terms of removing noisy variables without losing too
much information. In practice, such a threshold value could also be determined based on prior knowledge of
data structure or by experimenting with di�erent threshold values.

3 Numerical Results

To illustrate the performance of our proposed method, we consider some computational experiments on
di�erent simulated datasets (Section 3.1) and four real datasets in di�erent �elds (Section 3.2). In Section
3.3, the performance of our method is compared with that of Huh and Lim using the same datasets.

3.1 Simulation Data

Simulated Case 1: Five 3-dimensional Gaussian groups with 100 observations in each group contain
two informative variables and one noisy variable. Each group follows 3-dimensional multivariate normal,
N(µ, I3). Five group means are (5,0,0), (-5,0,0), (0,5,0), (0,-5,0), (0,0,0). With the 3D pictures of the
simulated data, we can easily see that two components are signals while the third one is noise. (First group
dataset, see Figure 2)

Figure 2: Scatterplots of First group dataset from di�erent perspectives

For the �rst dataset, our algorithm takes only two iterations in less than 1 second. The β of the �rst
two informative variables are very small while the β of the third noisy variable is almost 1 −− as expected
(See Table 1). Also the algorithm correctly indicates tselected = 2, which is the true number of informative
variables. With the re�ned estimation on β and α, we calculated the optimal variable weighting derived in
equation (11), and the cluster partition is shown in classi�cation table (See Table 2). We can see that all
objects are correctly classi�ed.



Table 1: Parameters of the First group dataset

β tselected αselected variable weights

Initial 0.0871, 0.0875, 0.2222 2 0.0450 1.5056, 1.4944, 0

1st iteration 0.0272, 0.0275, 0.9963 2 0.3230 1.5056, 1.4944, 0

2nd iteration 0.0272, 0.0275, 0.9963 2 0.3230 1.5004, 1.4996, 0

Table 2: Partition results of the First group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Group 1 100 0 0 0 0

Group 2 0 100 0 0 0

Group 3 0 0 100 0 0

Group 4 0 0 0 100 0

Group 5 0 0 0 0 100

Simulated Case 2: From Figure 2(A), we notice that the centroids of observations in each group are
quite scattered. So we reset the group means to (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,0) (Second group
dataset, see Figure 3(B)) and (3,0,0), (-3,0,0), (0,3,0), (0,-3,0), (0,0,0) (Third group dataset; Figure 3(C)).

Figure 3: (A) Scatterplots of First group dataset; (B) Scatterplots of Second group dataset; (C) Scatterplots
of Third group dataset

For the second and third group datasets, the estimated β and α obtained in each iteration and the
resulting partitions are reported in Tables 3 and 4 and Tables 5 and 6, respectively. From the tables, we
see that more than half of the observations are correctly clustered in all cases. In addition, the number of
mis-clustered points increases as the centroids of observations get close to each other.



Table 3: Parameters of the Second group dataset

β tselected αselected variable weights

Initial 0.1928,0.2000,0.2227 2 0.0099 1.8593,1.1407,0

1st iteration 0.2122,0.2701,0.9958 2 0.2612 1.8593,1.1407,0

2nd iteration 0.2240,0.2530,0.9952 2 0.2571 1.6108,1.3891,0

3rd iteration 0.2265,0.2503,0.9950 2 0.2561 1.5565,1.4435,0

4th iteration 0.2341,0.2421,0.9945 2 0.2535 1.5464,1.4536,0

5th iteration 0.2286,0.2472,0.9944 2 0.2553 1.5159,1.4841,0

6th iteration 0.2285,0.2473,0.9944 2 0.2553 1.5364,1.4636,0

7th iteration 0.2285,0.2473,0.9945 2 0.2553 1.5368,1.4632,0

8th iteration 0.2285,0.2473,0.9945 2 0.2553 1.5368,1.4632,0

Table 4: Partition results of the Second group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Group 1 69 0 3 4 24

Group 2 0 78 4 8 10

Group 3 6 4 66 2 22

Group 4 4 3 0 89 4

Group 5 12 11 10 19 48

Table 5: Parameters of the Third group dataset

β tselected αselected variable weights

Initial 0.1483,0.1492,0.2231 2 0.0249 1.5174,1.4826, 0

1st iteration 0.1349,0.1351,0.9969 2 0.2873 1.5174,1.4826, 0

2nd iteration 0.1350,0.1351,0.9969 2 0.2873 1.5003,1.4997, 0

3rd iteration 0.1350,0.1351,0.9969 2 0.2873 1.5002,1.4998, 0

Table 6: Partition results of the Third group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Group 1 94 0 0 0 6

Group 2 0 95 1 1 3

Group 3 0 0 96 0 4

Group 4 1 0 0 97 2

Group 5 3 5 2 5 85



Simulated Case 3: Note that in Case 1, the numbers of observations are the same across di�erent groups.
So we considered two other group datasets. In the fourth group dataset (shown in Figure 4(B)), we changed
the number of observations in each respective group to (100, 80, 60, 40, 20); whereas in the �fth dataset
(Figure 4(C)), we increased the sample sizes of di�erent groups to (100, 200, 300, 400, 500).

Figure 4: (A) Scatterplots of First group dataset; (B) Scatterplots of Fourth group dataset; (C) Scatterplots
of Fifth group dataset

For the fourth and �fth group dataset, the estimated parameters in each iteration and partition results
are listed in Tables 7, 8 and Tables 9, 10. We observe that the partition results are not in�uence by the
number of observations in each group since all objects are correctly classi�ed.

Table 7: Parameters of the Fourth group dataset

β tselected αselected variable weights

Initial 0.0766, 0.0813, 0.2149 2 0.0461 1.5517, 1.4483, 0

1st iteration 0.0184, 0.0340, 0.9882 2 0.3233 1.5517,1.4483, 0

2nd iteration 0.0184, 0.0340, 0.9882 2 0.3233 1.5240, 1.4760, 0

Table 8: Partition results of the Fourth group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Group 1 100 0 0 0 0

Group 2 0 80 0 0 0

Group 3 0 0 60 0 0

Group 4 0 0 0 40 0

Group 5 0 0 0 0 20



Table 9: Parameters of the Fifth group dataset

β tselected αselected variable weights

Initial 0.0878, 0.0973, 0.2148 2 0.0423 1.6116, 1.3884, 0

1st iteration 0.0248, 0.0582, 0.9966 2 0.3239 1.6116, 1.3884, 0

2nd iteration 0.0248, 0.0582, 0.9966 2 0.3239 1.5516, 1.4484, 0

Table 10: Partition results of the Fifth group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Group 1 100 0 0 0 0

Group 2 0 200 0 0 0

Group 3 0 0 300 0 0

Group 4 0 0 0 400 0

Group 5 0 0 0 0 500

Simulated Case 4: To test the performance of our method on high-dimensional large dataset, we created
seven 8-dimensional Gaussian groups with 100 observations in each group. The 8 variables include three
informative variables and �ve noisy variables. Each group follows an 8-dimensional multivariate normal
distribution, N(µ, I8). The seven group means are (-10, 0, 0, 0, 1, 1, 0, 0), (-10, 0, 0, 0, 1, 1, 0, 0), (-10, 0,
0, 0, 1, 1, 0, 0), (-10, 0, 0, 0, 1, 1, 0, 0), (0, 0, -10, 0, 1, 1, 0, 0), (0, 0, -10, 0, 1, 1, 0, 0), (0, 0, -10, 0, 1, 1, 0,
0) (the scatter plot of the sixth dataset is shown in Figure 5(A)). We also considered another dataset with
smaller distances between centroids, where each group contains 200 observations and the group means are
given by (-5, 0, 0, 0, 1, 1, 0, 0), (-5, 0, 0, 0, 1, 1, 0, 0), (-5, 0, 0, 0, 1, 1, 0, 0), (-5, 0, 0, 0, 1, 1, 0, 0), (0, 0,
-5, 0, 1, 1, 0, 0), (0, 0, -5, 0, 1, 1, 0, 0), (0, 0, -5, 0, 1, 1, 0, 0)(the seventh group dataset is shown in Figure
5(B)).

Figure 5: (A) Scatterplots of Sixth group dataset; (B) Scatterplots of Seventh group dataset

For the sixth and seventh datasets, our algorithm correctly indicates tselected = 3, which is exactly the
number of informative variables we create. The estimated parameters in each iteration and partition results
are given in Tables 11, 12 and Tables 13, 14.



Table 11: Parameters of the Sixth group dataset

β tselected αselected variable weights

Initial

0.0614,0.0638,0.064,

0.1842,0.1848,0.1866,

0.1871, 0.1923

7 0.1732

2.5922,2.5438,2.5393,

0.1108,0.0981,0.0632,

0.0526,0

1st iteration

0.0327,0.0336,0.0358,

0.9950,0.9950,0.9956,

0.9965, 0.9991

3 0.6318

2.5922,2.5438,2.5393,

0.1108,0.0981.0.0632,

0.0526,0

2nd iteration

0.0327,0.0336, 0.0358,

0.9950,0.9950,0.9956,

0.9965,0.9991

3 0.6318

2.6740,2.6690,2.6570,

0,0,0,

0,0

Table 12: Partition results of the Sixth group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Group 1 100 0 0 0 0 0 0

Group 2 0 100 0 0 0 0 0

Group 3 0 0 100 0 0 0 0

Group 4 0 0 0 100 0 0 0

Group 5 0 0 0 0 100 0 0

Group 6 0 0 0 0 0 100 0

Group 7 0 0 0 0 0 0 100

Table 13: Parameters of the Seventh group dataset

β tselected αselected variable weights

Initial

0.1178,0.1206,0.1221,

0.1900,0.1903,0.1923,

0.1928,0.1980

7 0.1059

2.5663,2.4724,2.4241,

0.1800,0.1703,0.1017,

0.0853,0

1st iteration

0.1188,0.1216,0.1275,

0.9953,0.9956,0.9956,

0.9963,0.9993

3 0.5758

2.5663,2.4724,2.4241,

0.1800,0.1703,0.10166,

0.0853,0

2nd iteration

0.1188,0.1216,0.1275,

0.9953,0.9956,0.9956,

0.9963,0.9993

3 0.5758

2.6900,2.6727,2.6372,

0,0,0,

0,0



Table 14: Partition results of the Seventh group dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 7 Cluster 7

Group 1 199 0 1 0 0 0 0

Group 2 0 200 0 0 0 0 0

Group 3 0 0 196 0 0 0 4

Group 4 0 0 0 199 0 1 0

Group 5 0 0 0 0 200 0 0

Group 6 0 0 0 0 0 199 1

Group 7 2 0 1 1 2 0 194

3.2 Real Datasets

Iris Data: This is a well-known dataset in the pattern recognition literature. The dataset contains 150
instances of three types of iris, 50 instances each. For each instance, sepal length, sepal width, petal length
and petal width were measured in cm as 4 variables. For this dataset, the estimated parameters in each
iteration and partition results are listed in Tables 15 and 16. We see that only 6 instances are mistakenly
clustered.

Table 15: Parameters of the Eighth group dataset

β tselected αselected variable weights

Initial 0.0818,0.0977,0.2176,0.3096 3 0.1477 1.8464,1.6860,0.4676,0

1st iteration 0.0602,0.0620,0.3468,0.5848 3 0.3482 1.8464,1.6860,0.4676,0

2nd iteration 0.0602,0.0620,0.3468,0.5848 3 0.3482 1.7475,1.7400,0.5126,0

Table 16: Partition results of the Eighth group dataset

Cluster 1 Cluster 2 Cluster 1

Group 1 50 0 0

Group 2 0 49 1

Group 3 0 5 45

Wholesale Customers data : This marketing and management dataset contains 440 instances of three
regions, 77, 47 and 316 respectively. For each instance, fresh products, milk, grocery, frozen products, paper
products, delicatessen products were measured as 6 variables. Using our algorithm, we get the partition
results and count the misclassi�ed cluster members in all clusters and divide it by the total number of
observations as the misclassi�cation rate (MR). The optimal weights and corresponding results are shown in
Table 17.

Yeast Data : In this data, there are 1484 observations in a total of 10 classes of yeasts. Then di�erent
measurements were transformed into 8 variable parameters from which the yeast features can be computed.
The optimal weights and partition results are given in Table 17.

Contraceptive Method Choice Dataset: This dataset including 1473 samples is a subset of the 1987
National Indonesia Contraceptive Prevalence Survey. The problem is to predict the current contraceptive
method choice (3 clusters: no use, long-term methods, or short-term methods) of a woman based on her
demographic and socio-economic characteristics, which includes 9 features. The optimal weights and partition
results are listed in Table 17.



Table 17: Comparison results of the real datasets

Instances/

Obsevations

Variables/

Features
Iteration Optimal Variable Weights Misclassi�cation Rate

Iris Data 150 4 2 1.7475,1.7400, 0.5126,0 6/150

Wholesale Data 440 6 4 2.4242,2.2391,1.3367,0,0,0,0 109/440

Yeast Data 1484 8 8 2.342,2.3423,1.3733,1.0040,0.9382,0,0,0 602/1484

CMC Data 1473 9 2 4.4570,4.2607,0.2637,0.0187,0,0,0,0,0 321/1473

3.3 Numerical Comparison

In this section, we compare the performance of our method to that of Huh and Lim. To allow for a
fair comparison of both algorithms, we use the �rst and sixth group dataset in Section 3.1 and iris data in
Section 3.2 for both two methods. We adopt the same mean-variance standardization used in Huh and Lim
paper and use multiple initial points to initialize both algorithms. In particular, we note that the Nelder-
Mead simplex method they used is primarily designed for unconstrained optimization and is not known to
be globally convergent. Consequently, their approach may likely lead to non-optimal clustering partitions
in practice. Therefore, we focus on the following two aspects in our comparison: Algorithm Stability and
Clustering Accuracy.

3.3.1 Algorithm Stability

We compare the algorithm stability by plotting the weighting curves on a set of penalty parameters α
ranging from 2-5 to 25 with an increment of 0.01. This is very critical, especially for the method of Huh
and Lim. Because in their method, this graph is used to locate a feasible range of α with stable variable
weighting. If the algorithm is not stable, it will be very di�cult to �nd the feasible range.

Recall from equation (3), when α increases from 0 to 1, the penalty part is emphasized and therefore
all weights in the objective function will gradually move towards 1. In the following �gures (See Figure
6, 7, 8), we see that our method captures this movement very nicely in all three datasets with all weights
moving slowly towards 1. However, for the method in Huh and Lim, this behaviour is observed only in the
First group of simulated data and the iris data with some outliers. In the Sixth group of simulated data,
their method failed to capture this movement. We see that the plot looks more like a collection of random
points rather than an expected weighting curve. This is because the Nelder-Mead method is only designed
for unconstrained optimization problems. In our problem, each variable weight is required to be bounded
between 0 and m. Thus the Nelder-Mead method fails to �nd the global optimal solution, and gets trapped
at local optima, especially when the dimensionality increases and the data structure becomes more complex.
In this case, their α selection approach, which based on the weighting curve, is not reliable.



Figure 6: (A) Weighting curve of the First group dataset using our method; (B) Weighting curve of the First
group dataset using Huh and Lim's method

Figure 7: (A) Weighting curve of the Sixth group dataset using our method; (B) Weighting curve of the
Sixth group dataset using Huh and Lim's method



Figure 8: (A) Weighting curve of the iris dataset using our method; (B) Weighting curve of the iris dataset
using Huh and Lim's method

3.3.2 Clustering Accuracy

To investigate the clustering accuracy, we compared the misclassi�cation rate of both methods. For each
dataset, �rst, each cluster is identi�ed as the group of majority members in the cluster. Then we present
the misclassi�cation rate (MR) in both ratio and percentage, which are shown in Table 18. Optimal penalty
parameter α was determined using our approach, equation (16), and the same α is used for both methods,
which is di�erent from the one used in Huh and Lim paper. Actually, they use weighting curve to determine
the penalty parameter, which is very subjective to do so.

We can see that our method outperforms the original method by Huh and Lim with much lower mis-
classi�cation rates. As pointed out in the previous section, due to the unstable behavior of their methods,
the original method they proposed fail to identify the underlying true range for α and result in inferior
performance.

The corresponding variable weights are also listed below (See Table 18). Our method �nds di�erent
variable weighting than the original method, which results in better clustering partition. It is interesting
to note that a slight di�erence in variable weighting can lead to a big di�erence in clustering partition as
seen in all datasets. We also note that our method is always able to distinguish the informative variables
from the noisy variables by assigning di�erent weights. However the previous method fails in the sixth
group of simulated data. This result is somehow as expected, since in lower dimensional data, the Nelder-
Mead method performs relatively well, whereas as the dimensionality increases, the Nelder-Mead Simplex
method may perform increasingly poorly and fail to �nd the global optimal for the constrained optimization
problems.



Table 18: Comparison results of our method and Huh & Lim's method

1st group dataset 6th group dataset Iris Data

Our Method

MR 0/500 0/700 6/150

MR in % 0 0 4.0%

Optimal Weights 1.50,1.50, 0 2.6740,2.6690,2.6570,0,0,0,0,0 1.7475,1.7400,0.5126,0

Lim and Huh

MR 1/500 189/700 14/150

MR in % 0.2% 27.0% 9.3%

Optimal Weights 1.49,1.51,0 0,3.57,4.43,0,0,0,0,0 0.58,0,1.75,1.67

4 Conclusion

It is well understood that K-means clustering algorithm is ideal for detecting clusters that are homoge-
nous and spherical and without the presence of noise variables. Weighted K-means algorithm can improve
the performance on non-homogenous and non-spherical cases by suppressing the noise variables and trans-
ferring the non-spherical space into a spherical space with appropriate variable weighting. However, most
existing studies are unable to �nd stable variable weights. Recently, Huh and Lim proposed a novel penalized
objective function for weighted k-means problem that yields more stable and reasonable solutions for low
dimensional case with a few variables.

In this paper, by adopting the same objective function used by Huh and Lim, we propose a more suitable
optimization method to select the penalty parameter α and an improved iteration algorithm to achieve the
optimal variable weights. Our preliminary data analysis indicates that our method can signi�cantly improve
the original method of Huh and Lim in terms of both algorithm stability and clustering accuracy, especially
on high-dimensional datasets.

Since our method provides a closed form representation of optimal variable weights, it is more computa-
tionally e�cient and can be utilized in high dimensional dataset, such as those arising in bioinformatics and
�nancial market. However, discovering the natural structure in a high dimensional space itself is a non-trivial
task no matter what algorithm is applied. It would be very interesting to validate our method on real high
dimensional datasets, but that would not be the main focus in this paper.
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A Appendix 1. Derivation of optimal variable weights

In order to derive the closed-form solution on the optimal variable weights, we �rst show the following
result:

Proposition 1. Let w∗i , i = 1, 2, . . . ,m be the optimal solutions to equation (2). Then w∗i > w∗j if and only
if βi < βj.

Proof. Assume ∃ w∗i < w∗j and βi < βj , then

βiw
∗
i + βjw

∗
j − βiw∗j − βjw∗i = (βi − βj)(w∗i − w∗j ) > 0

⇔ βiw
∗
i + βjw

∗
j > βiw

∗
j + βjw

∗
i (17)

Therefore, by switching the order of w∗i and w∗j , one can construct another set of weights w such that
f(w;α) < f(w∗i , α), which contradicts the fact that w∗i is the optimal solution in equation (2).

Now we start to solve the system of KKT conditions (7-10) derived from the KKT conditions. Firstly,
from equation (9), we know for each j, either µj or wj must be zero. Assuming there are t variables that
have nonzero weights, based on inequation (10) and Proposition 1, we have:

w1 ≥ w2 ≥ . . . ≥ wt > 0 = wt+1 = . . . = wm (18)

µ1 = µ2 = . . . = µt = 0 (19)

By substituting the above into equations (7) and (8), we can obtain the t solutions with nonzero weights:{
wj(α, t) =

m
t +

(βt−βj)(m−1)
2α j ≤ t

wj(α, t) = 0 j > t
(20)

where βt =
∑t

i=1 βi

t , λ(α, t) = 2α(t−m)
t(m−1) − βt.

In order to �nd the optimal variable weights, we need to decide the number of nonzero variable weights
t. From equation (18), we obtain:

wt =
m

t
+

(βt − βj)(m− 1)

2α
> 0⇒ α >

t(βt − βt)(m− 1)

2m
(21)

In the following, we denote

g(t) =
t(βt − βt)(m− 1)

2m
(22)

Since β1 ≤ β2 ≤ . . . ≤ βm, it is obvious that g(t) is a monotone function. Therefore, for a given α, the
set of all possible values of t satisfying equation (18) is given by:

T (α) = {t | g(t) < α ≤ g(t+ 1)} (23)

In view of equation (20), problem equation (2) can be re-formulated in terms of t, whose optimal solution
can be obtained by solving the following optimization problem:

topt = argmint∈T (α)f(w;α) (24)

Finally, replacing t by topt in equation (20), we obtain the optimal variable weights:wj(α, topt) = m
topt

+
(βtopt

−βj)(m−1)
2α j ≤ topt

wj(α, topt) = 0 j > topt
(25)



B Appendix 2. Proof of clustering partition

Here we prove the following result, which shows the unique clustering partition for α ∈ (g(t), g(t+ 1)],

where g(t) = t(βt−βt)(m−1)
2m , t = 1, 2, . . . ,m.

Proposition 2. Assuming the uniqueness of cluster assignment, if ∃ α∗ ∈ (g(t), g(t+1)], so that −→z0 = {z0j}
belongs to cluster g0, then for all α ∈ (g(t), g(t+ 1)], −→z0 = {z0j} belongs to cluster g0.

Proof. First, we de�ne the weighted squared-distance between object z0 and cluster g0 representing a cluster
with the centroid Cg0 = {cg01, . . . , cg0m} as follow:

Dα(
−→z0 , g0) =

m∑
j=1

(z0j

√
wj(α)− cg0j

√
wj(α))

2 (26)

Then de�ne function F as the di�erence between two weighted squared-distances:

Fα(
−→z0 , g0, gi) = Dα(

−→z0 , g0)−Dα(
−→z0 , gi) (27)

In K-means clustering, the object is always assigned to the nearest cluster with the smallest distance to
the cluster center. That is,

−→z0 = {z0j} ∈ g0 ⇔
Dα(
−→z0 , g0) < Dα(

−→z0 , gi) for ∀i 6= 0

⇔ Fα(
−→z0 , g0, gi) < 0 (28)

Therefore, if Fα(
−→z0 , g0, gi) is viewed as a function of α: F−→z0,g0,gi(α), then Proposition 2 is mathematically

equivalent to the following statement:

F−→z0,g0,gi(α) < 0 for all α ∈ (g(t), g(t+ 1)],

if ∃ α ∈ (g(t), g(t+ 1)], s.t. F−→z0,g0,gi(α
∗) < 0. (29)

Thus, we can prove equation (29) instead. First, we show that F−→z0,g0,gi(α) is actually a Hyperbolic
function of α with location parameter H1 and scale parameter H2.

F−→z0,g0,gi(α) = Dα(
−→z0 , g0)−Dα(

−→z0 , gi)

=

m∑
j=1

{
(cgij

√
wj(α)− cg0j

√
wj(α))(2z0j

√
wj − cgij

√
wj(α)− cg0j

√
wj(α))

}

=

m∑
j=1

{wj(α)(cgij − cg0j)(2z0j − cgij − cg0j)}

=

topt∑
j=1

[
m

topt
+

(βtopt − βj)(m− 1)

2α
] {(cgij − cg0j)(2z0j − cgij − cg0j)}

= H1 +
H2

α
(30)

where,

H1 ==
m

topt

topt∑
j=1

{(cgij − cg0j)(2z0j − cgij − cg0j)} ;

H2 ==
m− 1

2

topt∑
j=1

{
(βtopt − βj)(cgij − cg0j)(2z0j − cgij − cg0j)

}
. (31)



Since hyperbolic function is always monotonic in each branch, we will utilize this feature to prove
equation (29).The uniqueness assumption is utilized to prove Proposition 2. The proof includes two parts:
we prove Proposition 2 when H2 > 0 and when H2 < 0 separately.

1. When H2 > 0, according to monotonic feature of hyperbolic function, F−→z0,g0,gi(α) is strictly decreasing
when α > 0. To prove equation (29), we only need to show that:

F−→z0,g0,gi(αmin = g(t)) < 0, if ∃ α∗ ∈ (g(t), g(t+ 1)], s.t. F−→z0,g0,gi(α
∗) < 0. (32)

We proceed by contradiction and assume ∃ i 6= 0, F−→z0,g0,gi(αmin = g(t)) > 0, but F−→z0,g0,gi(α∗) <
0.That means −→z0 = {z0j} /∈ Cg0 when αmin = g(t). So there must be another cluster partition C′ 6= C
so that F−→z0,g′0,g

′
i
(αmin = g(t)) < 0, for ∀i 6= 0. Then, since F−→z0,g′0,g

′
i
(α∗) is monotonically decreasing

and α∗ > αmin = g(t), F−→z0,g′0,g
′
i
(α∗) < 0, for ∀i 6= 0. On the other hand, we have F−→z0,g′0,g

′
i
(α∗) < 0

by assumption, which implies −→z0 ∈ Cg′0
and also −→z0 ∈ Cg0 at the same time. This contradicts the

assumption that the cluster assignment is unique.

2. When H2 < 0, F−→z0,g0,gi(α) is strictly decreasing when α > 0. By following a similar argument as above,
we can show that:

F−→z0,g0,gi(αmax = g(t+ 1)) < 0, if ∃ α∗ ∈ (g(t), g(t+ 1)], s.t. F−→z0,g0,gi(α
∗) < 0. (33)

This further implies the desired result that equation (29) is true.
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